Gliese 436b's tail of evaporating hydrogen can be seen in this artist's concept Mark GArlick/Universiry of Warwick |
The study of our Universe
often produces findings which contradict our normal understanding of its
workings. And the planetary system of the red dwarf star Gliese 436 (GJ 436) -
located around 33.4 light years away - certainly falls into this category. This
red dwarf star Gliese 436 is one of the strangest known to mankind.
Scientists became
particularly interested in the star system because it hosts a strange,
Neptune-sized planet with a number of peculiar features - including a massive,
comet-like tail of vaporised gas and also has surface of burning ice. Now, an international team led by researchers
from the University of Geneva (UNIGE) have discovered that this planet - known
as Gliese 436b (GJ 436b) - also has a "very special" orbit.
Common knowledge dictates
that planets orbit on the same plane as the equator of their parent star.
However, a study published in the journal Nature shows
that GJ 436b's orbit is "polar", meaning it passes over the poles of
its star, instead of circling around the equator.
In other words, its
distance to the star varies greatly along its orbit. The astronomers told IBTimes
UK that this was "unusual" and totally
"unexpected" given the closeness of the planet to its star.
"This planet is under
enormous tidal forces because it is incredibly close to its star, barely 3% of
the Earth-Sun distance," said Vincent Bourrier, first author of the study
from the Department of Astronomy at UNIGE. "The star is a red dwarf whose
lifespan is very long; the tidal forces it induces should have since
circularized the orbit of the planet, but this is not the case!"
The next goal for the
researchers is to try and identify this hidden planet. The latest findings add
to GJ 436b's growing list of unusual features. The planet's spectacular,
comet-like tail is perhaps the most notable of these. Made up mostly of
hydrogen that has been ejected from the planet's atmosphere, the tail is around
50 times the size of the star that GJ 436b orbits.
But possibly even more
intriguing is the fact that the planet may host large quantities of an exotic
form of water ice, known as Ice X, which can remain solid despite temperatures
on the surface exceeding 400°C.
Scientists suggest that
the planet's powerful gravitational field is strong enough to compress the
water to such an extent, that it stays solid, even at extremely high
temperatures.
Via IBTimes